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Abstract

Using Gibbs method of dividing surfaces, the condition of equilibrium of a sessile drop on a flat non-deformable solid substrate is
investigated. The dependence of the line tension on the curvature radius of the dividing three-phase contact line is found. It has been derived a
relationship between the partial derivative of the line tension with respect to the curvature radius of the three-phase contact line (which stands
in the generalized Young equation) and the total derivative of the line tension with respect to the same radius along the equilibrium states.
Various approximated formulas of the generalized Young equation used in the literature are analyzed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and for the line tension dependence on the contact angle and
on the radius of the three-phase contact ling)]s
A partly wetting liquid forms, on a surface, sessile drops 5
with a certain contact anglg whose value is determined t_:)y o*B cos 6 = ofY — oY — (" + "> | cos ). (1)
the thermodynamic (adhesive) surface tensions of three in- or

terfaces and by the curvature radius of the three-phase contac"g'ere o is the thermodynamic surface tensiéris the equi-

line. For Sm‘?‘” drops, the dependence of t_he conta_ct angle Mibrium contact angley is the angle between the substrate
the contact line radius is known to be considerably influenced o
surface and the local principal plane of the three-phase con-

by the line tension &.It the thrta_e—phage boundary. The 9eners et line,r is the radius of the three-phase contact linis,the
alized Young equation describes this dependence. Various

enerallv non-equivalent forms of this equation are met in corresponding thermodynamic line tension (or the effective
'?he Iitera);ure (seqe e.d1-3]). whose ex e?imental verifica- line tension in case of substrate deformafib}); double su-
o S ' pert perscripts mark the quantities related to the interfaggs(1)
tion is problematic due to accuracy restrictions at the present. . . -
. . ; . corresponds to the choice of the surface of tension as a divid-
For a system including a solid substrate (ph@sie contact

with a liquid drop (phase) and with its equilibrium vapour ing surface between phasesndg,

e SinceEq. (1)was derived1] from the equilibrium condi-
(phasgB), the Yoqng equation in the most general form (ac- tionfor the grand thermodynamic potential, the partial deriva-
counting for gravity, for the slope and strain of the substrate

tive of « with respect to the radius of the three-phase contact
line is evidently taken at the constancy of the temperature, the
* Corresponding author. Tel.: +7 812 5542877. chemical potentials and the contact anddg. (1) was also
E-mail addressrusanov@AR1047.spb.edu (A.l. Rusanov). generalized for rough and heterogeneous surfgt;%
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Other problems related to the line tension have been profile will be spherical far from the three-phase contact line
actively studied in last several decades. Among them, aaccording to the condition of mechanical equilibrium be-
generalized Neumann—Young equation was obtdiégdhe tween the liquid and the vapour in the absence of gravity.
concept of line of tension was introducfd, the theories of ~ Overlapping of the surface layers is responsible for the for-
line tension based on different approaches to the detailed de-mation of an underlying (precursor) film modifying the solid
scription of the system were developed and several estimatesurface and leading to a difference betwe€ii and the sur-
of the value of the line tension were presenfgdl12], the face tension of a “bare” solid surface. The possible presence
stability conditions were examined and the possibility of line of the precursor film on the substrate is taken into account
tension to have positive or negative values was commentedin Eq. (2)by the termy®” APY. Neglecting the precursor film
[13-15] New experimental methods for measuring the line thickness, one can assume the entire sessile drop to have the
tension were described and different applications of the shape of a spherical segment. Its radius and the equilibrium
line tension concept to the theories of formation of thin contact angle can be found from the condition of a minimum
films, flotation, heterogeneous nucleation were found. A of the potentiak?2.
comprehensive list of references on most mentioned topics  For the voluma/®, the aread\*#, the base radius (the radius
is given in the recent review papdi]. A review of earlier of the three-phase contact liregnd the areA* of the base
works on the line tension can be found in referefids. of the spherical segment with the curvature radiiend the

Inthis work, we investigate the line tension dependence on angled between the spherical part and the base, one can write
the radius of adividing line which corresponds to the variation the following expressions:
of the radius of the dividing surface between phasasdp at

3
afixed physical state of the system. An analogous dependence,« — ﬂ(z + cos 6)(1 — cos 6)?, ©)
appears for surface tension in the known approach developed 3

t_)y Kondo[lG]. We_ shall consider the simple case o_f apure pap _ 27rR2(1 — cos 6), AYY = 7R?sin 26, (4)
liquid on a flat uniform substratep(= 0). The drop size is

implied to be large enough to neglect overlapping the surfacer = Rsin 6, L = 2xRsin 6. (5)

layers at the liquid/substrate and liquid/vapour boundaries

in the central part of the drop. Note that overlapping these

layers at drop perimeter determines the line tension and is of 8 — y;, _ y, ABY — A — AYY, (6)

principal importance. We shall obtain the drop equilibrium

conditions written for excess quantities corresponding not WhereVi is the total volume of the liquid—vapour subsystem,

only to the surface of tension, but also to an arbitrary choice of At is the total substrate area (to be more precise, the joint

adividing surface. We shall also discuss the physical meaningarea of the substrate/liquidyy, and substrate/vapougy,

of the derivativedx/dr and outline the way of its explicit ~ surfaces).

finding by numerical calculation. This way is also applicable =~ We define the excess quantities standing=t (2) by

to the cases when a dividing surface between phasesi choosing the Gibbs dividing surfaces as the segment spherical

is used different from the surface of tension. surface with radiuR and contact angleand flat surfaceay
andpvy in the framework of the Gibbs method. Puttiggs.
(3)—(6)into the right-hand side dfq. (2)yields an expression

2. Thermodynamic potential of a system with a for 2 in terms ofR ando:

sessile drop

For the quantities/® andAPY, one can write:

o TR 2
=—(p*—-p )T(2+ cos 6)(1 — cos 6)
Neglecting gravity, the grand thermodynamic poten@al 5 s .
of a system including a substrate, a one-component sessile  + 270 R*(1 — cos 6) — (c®Y — 0*Y)7R*sin %0
drop and its vapour can be written'as 4 27kRsin 6 — pBVt —oPVA, @)

— _pByB _ oy af 4aB y oy . . . .
$2=—p"V" —pTVi+oTAT +077A Evidently, potentiat2 also depends on the chemical potential
1+ oPYARY &L, (2) wu of molecules in the system and on the temperatwéthe

. . , system.
wherep is the pressurey is the volumeA is the surface

areal is the length of the three-phase contact line; the single
superscripts mark the quantities related to the correspondingg  The dependence of the line tension on the dividing

phases. _ o _ surface location
If there is no overlapping of the liquid/substrate and lig-

uid/vapour interfaces in the central part of the drop, the drop | ot us see what condition follows from the variation

of the location of the drop dividing surface at maintaining

1 Strictly speaking, this is a hybrid function thatis a grand thermodynamic the physical state of the system, i.e. from the choice of
potential for the liquid and vapour and free energy for the solid substrate.  various curvature radir for the drop spherical segment at
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the liquid/vapour boundary at fixed profiles of all physical
characteristics within the interface. Naturally, thermody-
namic potential2 (as well as the state parameters for the
bulk phases) cannot depend on the pure imaginary variation
of radiusR. Marking such variations with square brackets,
we write this condition as

=)o

— 8
T 8
We first apply this condition to the case of a free drop in
vapour. Then, instead &fq. (2) we have

4
2= —g(po‘ — PPYR® 4+ 476°BR? — pPV4 9)

(Eq. (7)changes t&q. (9)ato = w andA; = 0.) The condition
(8) for Eqg. (9)leads to the known Kondo equatifitt]

%]

where the drop surface tensiar®? is a function ofR,
whereas the pressure differerpe— pP plays the role of a
constant. The solution of the differentiad). (10)is

doB
dR

B _ 25%P
R

o

P —D

(10)

o = % + R, (11)
where the constarK is the work of the drop formation at a
given value of the condensate chemical potential@ndp®

— pP)/3 (these relationships can also be directly obtained
from Eg. (9)taking into account thaf2 is independent of
R). The plot of the function (11) is characterized by a unique
minimum of®#. The location of the dividing surface at the
minimum is called surface of tension, aid. (10)changes

to the Laplace equation

o

p

B _ 2a‘;‘t‘3

e (12)

In this case, we designated the radius of the surface of

tension adis; and surface tension®® atR = R asG;"tB. In
view of Egs. (11) and (12)ve have

af 52
ost Rt

3

o 20§LtB

K = = —.
3Rst

(13)

)

We now apply the same approach to a sessile drop in the
shape of a spherical segment. We follow the scheme usedk = — +

in referencd7] with some adaptation for the system under
consideration. Similar to the case of a free drop, all dividing
surface positions should be concentric, i.e. the dividing
surfaces should be conformal as defined by Gifibg.

However, they are segmental but not sectorial in the case of

a sessile dropHig. 1), so that the relationships hold

dr 1

dR  sin @’
(14)

do _coto

Rcos 0 = h = const =
dR R

s
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Fig. 1. The dividing surfaces and dividing lines for a spherical segment on
the substrate.

Putting nowEg. (7) into Eq. (8) and taking into account
Eq. (14) we obtain
ds2?

[dR] = —27R?(p* — pP)(1 — cosh) + 2R (2 — cosb)

op
+27R%(1 — cos 6) {ng } — 2nR(6®Y — oY)
2nK . dk
+m + 2R sin 0 Lﬂ?] =0. (15)

If we now express the surface tension derivative with the aid
of the Kondo equation (10Eq. (15)immediately leads to
the generalized Young equation

dx

)

d

In the right-hand side of this equation, the line tensiand
the line tension derivative fddr] with respect to the divid-
ing surface location in the substrate plane (with respect to the
location of the dividing three-phase contact line) at a fixed
physical state of the system are determined at an arbitrary
choice of the dividing line and the liquid/gas dividing surface.
The dependence o# and co® onr in Eq. (16)is de-
termined byEqgs. (5), (10) and (14)The left-hand side of
Eq. (16)is given by the difference®” — ¢, which is con-
stant at a fixed physical state of the system. Recognizing this,
we rewrite (16) as a differential equation

dx

oBY — o = 6B cos O+ < + { (16)
r

K

a
- [ —— A 17
& an
where we have introduced the notations
a=Kh, b=oPY— o™ —ch. (18)

Thus, taking into account the said above, three conskaats
andb are present iftq. (17)
The solution ofEq. (17)is
a4
r(r?2 + hz)l/2 r’

where the integration constathtan be expressed through the
radiusr =ry; of the dividing surface on the substrate plane at
the extreme point for the line tensiaras a function of:

a(Zrﬁ + h?)
— .
(2 +h?)*

Equation can also be directly obtained frétqg. (7) by ex-
pressings2 in terms ofr andh and usingeq. (11)

: - (19)

2
_ bric

d
2

(20)
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By analogy with the surface of tension, the dividing line A=-0.8.Inall cases considered, the vatue "1 corresponds
characterized by=r; and for which [d/dr]=0canbecalled to the local minimum in the curve(F). Because oEQs. (22)
the line of tensior7]. With this choice of a dividing surface, and (24) the absolute values éfmust be smaller than unity
the generalized Young equation (16) takes the simplest form (even smaller than 1/2 at negatibendxy). Therefore, the
appearance of amaximum in the case of negative line tensions

Kit
oPY — 0 = 0*P cos 0 + o (21) in Fig. 2atA = —0.8 can be an artefact.
t We designate as;; the radius of the dividing line, on the
wherexit = k|, substrate, corresponding to the choice of the surface of ten-

As itfollows fromEq. (17) the valueci of the line tension  sjon as a dividing surface between the liquid and the vapour.
can be expressed through the parameteesandb and the  From the above phenomenological analysis, it is hard to de-
radiusri; as duce how the quantities; andry; are related to each other.

ar One can only expect that their coincidence can be completely

3/2° (22) random and rare. In particular, this means that there is no rea-
(r2 + h?) . : :
son for neglecting the last term Bq. (16)when using the

According to the definitions (18) and (13), the constant  surface of tension (as well as the equimolecular surface) as a
is positive, whereas the constdntan be either positive or  dividing surface between the liquid and the vapour.
negative depending on the substrate wettability. Since, ob-
viously, riy > 0, the value ofc; can be either positive (at
b>a/(rg+ 12)*?) or negative (ab < a/(rg + n2)¥?). 4. The equilibrium condition at the three-phase

It is convenient to pass to dimensionless quantities in contact line
Eq. (19) k = «/«r andr’= r/r;, usingEq. (20)and exclud-

kit = briy —

ing constanb with the aid ofEq. (22) We now return tdeg. (7)for the thermodynamic potential
As aresult, we obtain, instead Bfy. (19) £2 of the system to derive the condition of equilibrium at the

1 1 three-phase contact line. Applying the equilibrium principle
7<=(7+~> to 2, we have

2 7

) 7 342 cot2 0y 942 —0. (25)
tAT - 2~ 7 ’ 9 ) 1R
7sin 36 (72 + cot 2 6y) r .

(23) The location of a dividing surface is now considered as given
atfixed conditions (and is arbitrary, since the conditions them-
selves are arbitrary). Fixing the temperature and chemical

ari h potential means the constancy of all state parameters of the
202+ 1272 O = arccota. (24) system including the curvature radiBof the drop surface.

It By contrast, the distancle (seeFig. 1) becomes variable.
These parameters can be regarded as independent, with thelerewith the relationship is fulfilled
sign of parametef being determined by the sign of the line

. 0
tension;. ( r) = Rcos 6. (26)
TR

where only two parameters remakandoy,

A

Fig. 2 shows the dependence of the dimensionless line B
tension¢on the dimensionless radinsfa dividing line ab _ _ o
=0.1and atthree values of parameigk=0.5,A= —0.1and  Putting Eq. (7)into Eq. (25)taking into accountq. (26)
yields

= 082 . .
- () = —(p* — pP)7R3sin 26 + 270*P R?sin 6
00 TR
i +27KkR cos 6 — 21 (cPY — 0*¥)R? sind cosd

r

i a
S +27R?sin ecose<K> =0. (27)
T

! Itis implied here that the line tensiarn= «(T, w, r) does not

8 10 explicitly depend on the contact anglelf we now replace
the differencep® — pP by the expression following from the

Fig. 2. The dependence of the line tensioor the radius- of a dividing Kondo equation (lO)Eq' (27) changes to the generallzed

line atgy; = 0.1 and at three different values of paramét#&x=0.5,A=-0.1 Youn_g equation _a_t a certain given (by ex_t(—?-rr_lal c_onditions)
andA=-0.8. location of the dividing surface and at a dividing line corre-
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sponding to this dividing surface: Gibbs adsorption equation for surfaces (the excegdays
the role of a linear adsorption). At a constant temperature,

oBY _ 50 — 5B cosg 4+ K 4 (3") _rtand {da"‘B} _ Eq. (32)yields an important relationship

r o) 1, 2 dR

(28) <3K> _ e 40 (33)

Taking the surface of tension as the dividing surfamg,(28) LTI ar
becomes In particularEq. (33)permits us finding the partial derivative

« 9 (0klor) 1, from the linear adsorption valué¢ and the deriva-
oY — o™ =B cos 4+ — + (a> , (29) tives dc/dr and qu/dr along equilibrium states. For example,

d "/ T such calculations are possible by applying the density func-

which coincides withEq. (1)at ¢ = 0. Comparing the right- tional method based on the models for intermolecular poten-
hand sides oEgs. (16) and (29)wve arrive at the relationship ~ tials[10,11,20Jand by applying the method of the functional

of the local thickness of a liquid film based on the approxima-

(8/<> B {d/c} rtan 6 {da"‘ﬁ] (30) tions for the isotherm of the disjoining pressure as a function
o)1, ©ldr 2 drR |’ of the film thicknes$8,9,11] Both these methods are capa-

) ) i ] ble of independent calculating the contact angle, the chemical
This equation relates the physical dependence of the line teNpotential of molecules in a system and the linear adsorption
sion on the radius of the three-phase contact line at given 55 functions of the dividing line radius.
temperature and chemical potential to the imaginary depen-  gome assertions can be made without using any specific
dence of the line and surface tensions on the dividing surfaceyqdel. Let us assume that the line tensiand the linear ad-
location. If the surface of tension is chosen as a dividing sur- gorption A expressed as functions of the equilibrium contact
face, the surface tension derivativedig. (30)becomes zero,  |ine radiusr have the following asymptotic behavior:
and we arrive at a remarkable relationship

K =Ko+ 0@~ %), A= Ao+ 0FY) (34)

oK di
<ar> e {dr} ' BL) with the finite limitso and Ao corresponding to the bulk
coexistence at — wo (Wherer — oo, i.e. the contact line

Eq. (31)means that, with this choice of a dividing surface, pecomes straight). Under assumption of incompressible lig-
the derivative of the line tension with respect to radius of the 4 we have for the pressure difference

three-phase contact line at constant temperature and chemi-

cal potential coincides with the line tension derivative atan o _ B K~ 1o (35)
imaginary shift of the dividing surface at fixed physical state [
of the system. with v® the molecular volume ine phase. Using the

Laplace equation (12) arie. (34) one can derived/dr =

—20°By*r—2sin 6. It leads to the following estimation:
5. The role of linear adsorption q
m

As it was shown above, there remains a possibility for the dr
line tension variation together with the radius of the three- whereog‘B is the value of the surface tensiofi at . = o,

phas_e contact Iin_e_eyen when a certain choicelis made for thego is the limit macroscopic value of the contact angle. Ac-
location of the dividing surface between the liquid and the cording toEq. (34) one can estimate the derivative/dr as
vapour anq all the state parameters of the .bulk pha;es angy, /qr = O(r—2). It means that under the assumptions (34),
s_urfaces, like the temperatur_e ar_ld the cher_mcal pote_n_tla_l, arghe partial derivatived/r) 77, = O(r—2), while for the term
fixed. The corresponding derivative stands in the equilibrium ;. o1 the fight-hand side of the generalized Young equation

condition expressed Hyg. (28) _ _ _ (29), the estimatiowr/r = ko/r + O(r~2) can be made. There-
To write the expression for the total differential of the line fore, if the linear adsorptiont has a finite limit at bulk phase

tension, it is sufficient to supplement the partial differential coexistence, the termi/ar) 7., can be neglected for suffi-

corresponding to this derivative with the terms with differen- ciently large droplets and the terafr can be approximated
tials of temperature and chemical potential: with its asymptotic formeo/r.

= —ZAoongar_z sin g + 0(}’_3)

a
dic = (K) dr — sidT — Adp. (32)
or T .
’ 6. Conclusion
Coefficientss and A are known as the linear excesses of en-
tropy and matter, respectively, related to the unitlength ofthe ~ The analysis presented ascertains the role of the term with
three-phase contact linEg. (32)itself is nothing else as the  the line tension derivative with respect to the radius of the

linear adsorption equatidt5,18]called by analogy withthe  three-phase contact line when using the generalized Young
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equation for establishing relations between the contact an-the corresponding dividing surfaces equimolecular with re-
gle, the line tension and the radius of the three-phase contacspect to the solid component. Choosing the equimolecular
line. The generalized Young equation with= const and, surface as the dividing surfaegs, adsorption/# becomes
correspondingly, without the terid/or (see, e.g.[2], and exactly equal to zero. In this case, howeuegs. (10) and
also references in referen¢&9]) has repeatedly been dis- (28) expressing the equilibrium condition become different
cussed in the literature. In other papers, the dependgnce  from the Laplace equation (12) and the generalized Young
has been granted in the generalized Young equation, but theequation (29).
contribution of the partial derivativex/ar [21] has been ne- Wherea<q. (29)derived within phenomenological ther-
glected. In the third case, the partial derivatisdor in the modynamics is rigorous at the choice of dividing surfaces as
generalized Young equation had been replaced by the totalis indicated, its various truncated forms can be used, if at all,
derivative d/dr along the equilibrium states (as, for example, only in restricted regions.
it was actually made in referen¢®]) and, in this way, the
linear adsorption (se€q. (33) had been neglected.
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